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Short Papers

On the Relationship Between TLM and Finite-Difference
Methods for Maxwell’s Equations

PETER B. JOIINS

Abstract —It is shown that if the expanded node three-dimensional
TL.M method is operated in a certain way, then it can be numerically
equivalent to a finite-difference method. Some comments are made on
comparisons between the two approaches.

I. INTRODUCTION

It has been recognized for some time that under particular
circumstances, the TLM method can be similar to the finite-
difference method, and the relationship has been established in
the case of the model for diffusion [1]. In this paper, it is shown
that the three-dimensional expanded node model [2]-[4] can also
be operated in a way that produces numbers identical tc the
finite-difference approach, but such a mode of operation for
TLM could be regarded as inefficient. A simplification of the
analysis also leads to similar conclusions for two-dimensional
methods.

II. TLM AND FINITE-DIFFERENCE ALGORITHMS
The TLM algorithm may be expressed as

Jr=8V
netV' =GV (1)

V' and V" represent the incident and reflected pulses in the
entire network at the time interval »n. C is a connection matrix
such that

C,;=1 ifporti is connected to port j

C,, =0 otherwise.

§ is a super matrix with the scattering matrices associated with
each scattering zone or node as blocks on the diagonal.

It is always possible to express the field quantities ¢ in terms
of incident pulses, i.e.

o=qV'. (2)
Here ¢ is the vector of all the field quantities E,, E,, E_, I,

H, and H, at all the nodes in the mesh.
It may be possible to express § as

S=pXq+r (3)
and indeed this can be donec for the shunt and series nodes
making up the expanded node mesh.

Thus, for scattering associated with an x-directional shunt
node in the mesh [5]

4=E (@)
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and
2
g=S[ 111 %] (5)
p=[1 111 1] (6)
r=—1 @)
where I is an identity matrix and where
Y, =2¢ —4
Y=4+Y,+G,

G, = oAl‘ f Ko
€

and where A/ is the space step.
The scattering for a series node is also given in [5]; thus, for an
x-directed series node

¢=H, (8)
2 )
g=—1/—[-1 1 1 -1 -1] (9)
zZ Y Po
Ko T
p=+/—I1 -1 -1 1 Z] (10)
€
=7 (11)
where
Zy=2p,—4
Z=4+7Z,.

Following the development in {1}, (1)—(3) may be combined

n+1¢ =qC(pn¢ + rnVl)'

Here, r# 0, so the TLM method cannot be expressed as a
two-time-level algorithm solely in terms of the quantities ¢.

Thus

n+19 =qCp & +9CrCp,_1$ +qCrCr, _,V". (12)

Thus, provided S can be expressed as (3) and provided
CrCr =qal

where a is a constant, the routine can be expressed solely in
terms of ¢, the field quantities. Under these conditions, the
routine becomes

w19 =qCp,0 +q9CrCp,, 16 +a, 1$. (13)

There are many ways of operating the TLM algorithm for the
expanded mesh and there is much to explore in (12). One way,
instead of having pulses incident at all nodes simultaneously, is
to have pulses incident at only shunt nodes at one instant and
only at series nodes at one-half time step later.

Suppose that the pulses are incident upon the shunt nodes at
time #; then, substituting (4)-(11) in (12) gives one of the
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equations as

t+At/2Hx(i’j+%’k+%)

2 € o
Ellﬁ; {.E,(i,j+%,k+1)

- E,(i,j+1k)

+,E (i, j, k+1%)

- E(i,j+1,k+1)}
+2, apH (i j+5,k+1)
—t\At/ZHx(i!j+%’k+%)'

This is the same as one of the finite-difference equations used
by Taflove and Brodwin in [6] in their implementation of Yee’s
original formulation [7]. The remaining five equations can be
derived in a similar way. The two-dimensional method is a
simplification of the above, requiring modification of (9)-(11).

III. CoMpaRISONS BETWEEN TLM AND FINITE
DIFFERENCES

Great care has to be taken in comparing computer resources
for the TLM method with the finite-difference method since
much more information is available in the former. In the three-
dimensional TLM method operated in the above way, there are
three field quantities available at each shunt and series node.
This, for example, allows the boundary description for TLM to
be twice as fine as for finite differences. In two dimensions, if
boundaries are described only at nodes as in finite differences,
then incident pulses need only be at alternate nodes at any
instant. Thus, an average of two stores for link lines, not four, is
required at each node. Alternatively, if the pulses are incident
simultaneously at all nodes, then boundaries can exist halfway
between nodes as well as at nodes, and the boundary description
is again finer than in finite differences. Also, in assessing arith-
metical load, it should be recognized that implementation of (2)
and (3) requires much less work than a matrix multiplication.

Comparison of the algorithm is interesting, but often there is a
balance between computational efficiency and program or data
complexity. -A much more important difference between TLM
and finite difference is that the former is a physical model using
transmission lines, while the latter is a mathematical model using
differencing. The advantage of TLM is that it provides the
engineer with a conceptual model which can be simulated exactly
on a digital computer. The comparison should include the model-
ing philosophy and not just the algorithm details.

Another advantage of the TLM approach is that it can lead to
models and algorithms which cannot be readily expressed in
terms of the field quantities because the scattering matrix is not
easily factorized as in (3). Examples of this are the asymmetrical
condensed node or punctual node [8], [9] and the symmetrical
condensed node [10], which have the advantage of condensing all
six field quantities to one point in space.

In the author’s view, the TLM method and the finite difference
method complement each other rather than compete with each
other. Each leads to a better understanding of the other.

REFERENCES

[1] P. B. Johns and G. Butler, “The consistency and accuracy of the TLM
method for diffusion and its relationship to existing methods,” Int. J.
Numerical Methods Eng., vol. 19, pp. 1549-1554, 1983.

[2] S. Akhtarzad and P. B. Johns, “The solution of Maxwell’s equations in
three space dimensions and time by the TLM method of numerical
analysis,” Proc. Inst. Elec. Eng., vol. 122, no. 12, pp. 1344-1348, Dec.
1975.

[31 W. . R. Hoefer, “The transmission-line matrix method—Theory and
applications,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, Oct.
1985.

{4] G. E. Mariki and C. Yeh, “Dynamic three-dimensional TLM analysis of
microstriplines on aniostropic substrate,” IEEE Trans. Microwave The-
ory Tech., vol. MTT-33, Sept. 1985,

[5] S. Akhtarzad and P. B. Johns, “Generalized elements for the TLM
method of numerical analysis,” Proc. Inst. Elec. Eng., vol. 122, no. 12,
pp. 1349-1352, Dec. 1975. '

[6] A. Taflove and M. E. Brodwin, “Numerical solution of steady-state
electromagnetic scattering problems using the time-dependent Maxwell’s
equations,” JEEE Trans. Microwave Theory Tech., vol. MTT-23, pp.
623-630, Aug. 1975.

[71 K. S. Yee, “Numerical solution of initial boundary value problems
involving Maxwell’s equations in isotropic media,” IEEE Trans. Anten-
nas Propagat., vol. AP-14, pp. 302-307, May 1966.

[8] P. Saguet and E. Pic, “Utilisation d’un nouveau type de doeud dans la
methode TLM en 3 dimensions,” Efectron. Lett., vol. 18, no. 11, pp.
478-480, May 1982.

[91 A. Amer, “The condensed node TLM method and its application to

transmission in power systems,” Ph.D. thesis, Nottingham Univ., 1980.

P. B. Johns, “New symmetrical condensed node for three-dimensional

solution of electromagnetic-wave problems by TLM,” Electron. Lett.,

vol. 22, no. 3, pp. 162~164, Jan. 30, 1986.

[10]

Approximate Determination of the Characteristic
Impedance of the Coaxial System Consisting of
an Irregular Outer Conductor and a
Circular Inner Conductor

SHENG-GEN PAN

Abstract — An elementary formula is presented for the determination of
the characteristic impedance of a coaxial transmission line consisting of a
circular inner conductor and an irregular outer conductor. In this approach,
the irregular outer conductor is replaced by an eccentric circular outer
conductor which has the same “shield factor” as an irregular one at the
extreme of a small wire, and the same formula is adapted for outer
conductors of different shapes by determining values of eccentricity of the
equivalent eccentric coaxial lines. The validity of the formula is confirmed
by numerical results.

I INTRODUCTION

Considerable work has been done on the determination of the
characteristic impedance of a coaxial transmission line consisting
of a circular inner conductor and a noncircular outer conductor
[1}-[9]. Elementary formulas for some shapes have been available
for small ratios of inner and outer conductors. A formula for
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