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Short Papers

On the Relationship Between TLM and Finite-Difference

Methods for Maxwell’s Equations

PETER B. JOHNS

Abstract — It is shown that if the expanded node three-dimensional

TLM method is operated in a certain way, then it can be numerically

equivalent to a finite-difference method. Some comments are made on

comparisons between the two approaches.

I. INTRODUCTION

It has been recognized for some time that under particular

circumstances, the TLM method can be similar to the finite-

difference method, and the relationship has been established in

the case of the model for diffusion [1]. In this paper, it is shown

that the three-dimensional expanded node model [2]–[4] can also

be operated in a way that produces numbers identical to the

finite-difference approach, but such a mode of operation for

TLM could be regarded as inefficient. A simplification of the

analysis also leads to similar conclusions for two-dimensional

methods.

II. TLM AND FINITE-DIFFERENCE ALGORITHMS

The TLM algorithm may be expressed as

*v’= snv’

~+lv’ = Cnv’. (1)

V’ and V’ represent the incident and reflected pulses in the

entire network at the time interval n. C is a connection matrix

such that

C,j = 1 if port i is connected to port j

C,l = O otherwise.

S is a super matrix with the scattering matrices associated with

each scattering zone or node as blocks on the diagonal.

It is always possible to express the field quantities @ in terms

of incident pulses, i.e.

4s=qv’. (2)

Here @ is the vector of all the field quantities E%, E,, Ez, Hz,

~,, and Hz at all the nodes in the mesh.

It may be possible to express S as

S=p Xq+r (3)

and indeed this can be done for the shunt and series nodes

making up the expanded node mesh.

Thus, for scattering associated with an x-directional shunt

node in the mesh [5]

+=EX (4)
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(5)

and

9=; [1 1 1 1 ~]

p=[l 1 1 1 I]T

~=—r

where 1 is an identity matrix and where

YO=2E, –4

Y=4+YO+G0

r
GO=oAl ti

Eo

and where Al is the space step.

The scattering for a series node is also given in [5]; thus, for an

x-directed series node

I$=HX (8)

(6)

(7)

q=? r;[-1 1 1 -1 -1] (9)
z

p=

r
:[1 -1 -1 1 ZO]T (lo)

~=1 (11)

where

Zo=2p, –4

Z=4+Z0.

Following the development in [1], (l)–(3) maybe combined

.+10 =9C(lJ.@+rnV’).

Here, r + O, so the TLM method cannot be expressed as a

two-time-level algorithm solely in terms of the quantities 4.

Thus

.+14 =Kp.+ +9 CrCpn-1+ +9 CrCrn-lV’ (12)

Thus, provided S can be expressed as (3) and provided

Cr”Cr = aI

where a is a constant, the routine can be expressed solely in

terms of +, the field quantities. Under these conditions, the

routine becomes

.+14 =9Cpn4+9CrCpn-l@ +a.-1$ (13)

There are many ways of operating the TLM algorithm for the

expanded mesh and there is much to explore in (12). One way,

instead of having pulses incident at all nodes simultaneously, is

to have pulses incident at only shunt nodes at one instant and

only at series nodes at one-half time step later.

Suppose that the pulses are incident upon the shunt nodes at

time t; then, substituting (4)–(11) in (12) gives one of the
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–tl?y(i, j-t+,k)

+[Ez(i, j,k+*)

–, E=(i, j+l, k+~)}

+2,_At/,~x(i,j+ ;,k++)

—,_~t,zHX(i, j+~,,fc -!-~).

This is the same as one of the finite-difference equations used

by Taflove and Brodwin in [6] in their implementation of Yee’s

original formulation [7]. The remaining five equations can be

derived in a similar way. The two-dimensional method is a

simplification of the above, requiring modification of (9)-(11),

III. COMPARISONS BETWEEN TLM AND FINITE

DIFFERENCES

Great care has to be taken in comparing computer resources

for the TLM method with the finite-difference method since

much more information is available in the former. In the three-

dimensional TLM method operated in the above way, there are

three field quantities available at each shunt and series node,

This, for example, allows the boundary description for TLM to

be twice as fine as for finite differences. In two dimensions, if

boundaries are described only at nodes as in finite differences,

then incident pulses need only be at alternate nodes at any

instant. Thus, au average of two stores for link lines, not four, is

required at each node. Alternatively, if the pulses are incident

simultaneously at all nodes, then boundaries can efist halfway

between nodes as well as at nodes, and the boundary description

is again finer than in finite differences. Also, in assessing arith-

metical load, it should be recognized that implementation of (2)

and (3) requires much less work than a matrix multiplication.

Comparison of the algorithm is interesting, but often there is a

balance between computational efficiency and program or data

complexity. -A much more important difference between TLM

and finite difference is that the former is a physical model using

transmission lines, while the latter is a mathematical model using

differencing. The advantage of TLM is that it provides the

engineer with a conceptual model which can be simulated exactly

on a digital computer. The comparison should include the model-

ing philosophy and not just the algorithm details.

Another advantage of the TLM approach is that it can lead to

models and algorithms which cannot be readily expressed in

terms of the field quantities because the scattering matrix is not

easily factorized as in (3). Examples of this are the asymmetrical

condensed node or punctual node [8], [9] and the symmetrical

condensed node [10], which have the advantage of condensing all

six field quantities to one point in space.

In the author’s view, the TLM method and the finite difference

method complement each other rather than compete with each

other. Each leads to a better understanding of the other.
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Approximate Determination of the Characteristic
Impedance of the Coaxial System Consisting of

an Irregular Outer Conductor and a

Circular Inner Conductor

SHENG-GEN PAN

Abstract -Arr elementary forotofa is presented for the determination of

the characteristic impedance of a coaxial transmission line consisting of a

circufar inner conductor and an in’egtdar outer conductor. In this approach,

the irregular outer condnctor is replaced by an eccentric circular enter

condnctor which has the same “shield factor” as art irregular one at the

extreme of a small wire, and the same formnla is adapted for outer

conductors of different shapes by determining valnes of eccentricity of the

equivalent eccentric coaxial lines. The valWy of the formnfa is confirmed

by numericaf restrfts.

I. INTRODUCTION

Considerable work has been done on the determination of the

characteristic impedance of a coaxial trywnission line consisting

of a circular inner conductor and a noncircular outer conductor

[1]-[9]. Elementary formulas for some shapes have been available

for small ratios of inner and outer conductors. A formula for
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